knowledge_map/学习/卡尔曼滤波.md
2024-11-16 14:33:59 +08:00

50 lines
1.8 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

已知四旋翼无人机如下条件
1GPS位置5hz频率刷新
2机体坐标系下xyz轴速度50hz频率刷新
3机体坐标系下xyz轴加速度50hz频率刷新
4无人机的姿态四元数50hz频率刷新
要求考虑姿态四元数对速度和加速度在全局坐标系中的影响,并使用卡尔曼滤波器作为融合算法,如何调整下面代码
```
t_gps = 0:0.2:10; % 5Hz GPS时间向量
t_imu = 0:0.02:10; % 50Hz IMU时间向量速度和加速度
% 假设数据已经准备好并且已经加载到MATLAB中
gpsData = [t_gps, gps_x, gps_y, gps_z];
imuData = [t_imu, imu_vx, imu_vy, imu_vz, imu_ax, imu_ay, imu_az];
quaternionsData[t_imu, w, x, y, z];
% 初始化位置
predicted_positions = zeros(length(t_imu), 3);
% 假设初始位置为第一个GPS读数
predicted_positions(1, :) = gpsData(1, 2:4);
% 对速度和加速度进行积分以估计位置
for i = 2:length(t_imu)
dt = t_imu(i) - t_imu(i - 1);
vel = imuData(i - 1, 2:4);
acc = imuData(i - 1, 5:7);
% 前向欧拉积分来更新速度
new_vel = vel + acc * dt;
% 更新位置
predicted_positions(i, :) = predicted_positions(i - 1, :) + new_vel * dt;
% 如果当前时间是GPS更新时间则进行调整
if ismember(t_imu(i), t_gps)
gps_index = find(t_gps == t_imu(i));
actual_position = gpsData(gps_index, 2:4);
% 这里可以添加一个融合算法来调整位置,例如简单的取平均
predicted_positions(i, :) = (predicted_positions(i, :) + actual_position) / 2;
end
end
% 绘制结果
figure;
plot3(gpsData(:,2), gpsData(:,3), gpsData(:,4), 'r.');
hold on;
plot3(predicted_positions(:,1), predicted_positions(:,2), predicted_positions(:,3), 'b-');
legend('Actual GPS', 'Predicted Position');
xlabel('X'); ylabel('Y'); zlabel('Z');
title('GPS Position Estimation');
grid on;
```